9 resultados para Bovine herpesvirus 5

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background
The use of small interfering RNA (siRNA) molecules in animals to achieve double-stranded RNA-mediated interference (RNAi) has recently emerged as a powerful method of sequence-specific gene knockdown. As DNA-based expression of short hairpin RNA (shRNA) for RNAi may offer some advantages over chemical and in vitro synthesised siRNA, a number of vectors for expression of shRNA have been developed. These often feature polymerase III (pol. III) promoters of either mouse or human origin.
Results
To develop a shRNA expression vector specifically for bovine RNAi applications, we identified and characterised a novel bovine U6 small nuclear RNA (snRNA) promoter from bovine sequence data. This promoter is the putative bovine homologue of the human U6-8 snRNA promoter, and features a number of functional sequence elements that are characteristic of these types of pol. III promoters. A PCR based cloning strategy was used to incorporate this promoter sequence into plasmid vectors along with shRNA sequences for RNAi. The promoter was then used to express shRNAs, which resulted in the efficient knockdown of an exogenous reporter gene and an endogenous bovine gene.
Conclusion
We have mined data from the bovine genome sequencing project to identify a functional bovine U6 promoter and used the promoter sequence to construct a shRNA expression vector. The use of this native bovine promoter in shRNA expression is an important component of our future development of RNAi therapeutic and transgenic applications in bovine species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The elastic modulus and hardness of several microstructure components of dry bovine vertebrae and tibia have been investigated in the longitude and transverse directions using nanoindentation. The elastic modulus for the osteons and the interstitial lamellae in the longitude direction were found to be (24.7±2.5) GPa and (30.1±2.4) GPa. As it's difficult to distinguish osteons from interstitial lamellae in the transverse direction, the average elastic modulus for cortical bovine bone in the transverse direction was (19.8±1.6) GPa. The elastic modulus for trabecular bone in the longitude and transverse direction were (20±2) GPa and (14.7±1.9) GPa respectively. The hardness also varied among the microstructure components in the range of 0.41–0.89 GPa. Analyses of variance show that the values are significantly different.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, nano- and macro-scale characterisations on the mechanical properties of bovine cortical bones have been performed by using nanoindentation and conventional compressive tests. Nanoindentation results showed that the elastic modulus for the osteons and the interstitial lamellae in the longitude direction were 24.7 ± 2.5 GPa and 30.1 ± 2.4 GPa. As it’s difficult to distinguish osteons from interstitial lamellae in the transverse direction, the average elastic modulus for cortical bovine bone in the transverse direction was 19.8 ± 1.6 GPa. Significant differences were found in the modulus values between different microstructures of bone tissue and in different testing direction. It was found that the elastic modulus of bone bovine material in nano-level was higher than that in macro-level. The elastic modulus and
ultimate stress of large bone samples were 12.5 ± 1.9 GPa and 195 ± 19 MPa respectively from the compression test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine viral diarrhea virus (BVDV) is a ubiquitous viral pathogen that affects cattle herds’ worldwide causing significant economic loss. The current strategies to control BVDV infection include vaccination (modified-live or killed) and control of virus spread by enhanced biosecurity management, however, the disease remains prevalent. With the discovery of the sequence-specific method of gene silencing known as RNA interference (RNAi), a new era in antiviral therapies has begun. Here we report the efficient inhibition of BVDV replication by small interfering (siRNA) and short hairpin RNA (shRNA)-mediated gene silencing. siRNAs were generated to target the 5′ non-translated (NTR) region and the regions encoding the C, NS4B and NS5A proteins of the BVDV genome. The siRNAs were first validated using an EGFP/BVDV reporter system and were then shown to suppress BVDV-induced cytopathic effects and viral titers in cell culture with surprisingly different activities compared to the reporter system. Efficient viral suppression was then achieved by bovine 7SK-expressed BVDV-specific shRNAs. Overall, our results demonstrated the use of siRNA and shRNA-mediated gene silencing to achieve efficient inhibition of the  replication of this virus in cell culture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: It has been argued that a reduction in the Western diet of anti-inflammatory unsaturated lipids, such as n-3 polyunsaturated fatty acids, has contributed to the increase in the frequency and severity of allergic diseases.

Objective
: We investigated whether feeding milk fat enriched in conjugated linoleic acid and vaccenic acids (VAs) ('enriched' milk fat), produced by supplementing the diet of pasture-fed cows with fish and sunflower oil, will prevent development of allergic airway responses.

Methods: C57BL/6 mice were fed a control diet containing soybean oil and diets supplemented with milk lipids. They were sensitized by intraperitoneal injection of ovalbumin (OVA) on days 14 and 28, and challenged intranasally with OVA on day 42. Bronchoalveolar lavage fluid, lung tissues and serum samples were collected 6 days after the intranasal challenge.

Results
: Feeding of enriched milk fat led to marked suppression of airway inflammation as evidenced by reductions in eosinophilia and lymphocytosis in the airways, compared with feeding of normal milk fat and control diet. Enriched milk fat significantly reduced circulating allergen-specific IgE and IgG1 levels, together with reductions in bronchoalveolar lavage fluid of IL-5 and CCL11. Treatment significantly inhibited changes in the airway including airway epithelial cell hypertrophy, goblet cell metaplasia and mucus hypersecretion. The two major components of enriched milk fat, cis-9, trans-11 conjugated linoleic acid and VA, inhibited airway inflammation when fed together to mice, whereas alone they were not effective.

Conclusion
: Milk fat enriched in conjugated linoleic and VAs suppresses inflammation and changes to the airways in an animal model of allergic airway disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human skeletal muscle precursor cells (myoblasts) have significant therapeutic potential and are a valuable research tool to study muscle cell biology. Oxygen is a critical factor in the successful culture of myoblasts with low (1–6%) oxygen culture conditions enhancing the proliferation, differentiation, and/or viability of mouse, rat, and bovine myoblasts. The specific effects of low oxygen depend on the myoblast source and oxygen concentration; however, variable oxygen conditions have not been tested in the culture of human myoblasts. In this study, muscle precursor cells were isolated from vastus lateralis muscle biopsies and myoblast cultures were established in 5% oxygen, before being divided into physiological (5%) or standard (20%) oxygen conditions for experimental analysis. Five percent oxygen increased proliferating myoblast numbers, and since low oxygen had no significant effect on myoblast viability, this increase in cell number was attributed to enhanced proliferation. The proportion of cells in the S (DNA synthesis) phase of the cell cycle was increased by 50%, and p21Cip1 gene and protein expression was decreased in 5 versus 20% oxygen. Unlike in rodent and bovine myoblasts, the increase in myoD, myogenin, creatine kinase, and myosin heavy chain IIa gene expression during differentiation was similar in 5 and 20% oxygen; as was myotube hypertrophy. These data indicate for the first time that low oxygen culture conditions stimulate proliferation, whilst maintaining (but not enhancing) the viability and the differentiation potential of human primary myoblasts and should be considered as optimum conditions for exvivo expansion of these cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drying and denaturation kinetics of aqueous droplets of α-lactalbumin (α-lac), β-lactoglobulin (β-lg), and bovine serum albumin (BSA) were measured in a convective drying environment. Single droplets having an initial droplet diameter of 2 ± 0.1 mm and containing 10% (w/v) protein concentration were dried using conditioned air (65 and 80 °C, 2-3% RH, 0.5 m/s velocity) for 600 s. The denaturation of these proteins was measured by using reversed-phase HPLC. At the end of 600 s of drying 13.3 and 19.4% α-lac was found to be lost due to denaturation at 65 and 80 °C, respectively. Up to 31.0% of β-lg was found to be denatured, whereas BSA was not found to be significantly (p > 0.05) denatured in these drying conditions. The formation and strength of skin and the associated morphological features were found to be linked with the degree of denaturation of these proteins. The secondary structure of these proteins was significantly (p < 0.05) affected and altered by the drying stresses. The β-sheet and random coil contents were increased in α-lac by 6.5 and 4.0%, respectively, whereas the α-helix and β-turn contents decreased by 5.5 and 5.0%, respectively. The β-sheet and random coil contents in β-lg were increased by 7.5 and 2.0%, respectively, whereas the α-helix and β-turn contents decreased by 3.5 and 6.0%, respectively. In the case of BSA the β-sheet, α-helix, and random coil contents were found to increase, whereas the β-turn content decreased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physicochemical and rheological properties of yoghurt made from unstandardised unhomogenised buffalo milk were investigated during fermentation and 28 days of storage and compared to the properties of yoghurt made from homogenised fortified bovine milk. A number of differences observed in the gel network can be linked to differences in milk composition. The microstructure of buffalo yoghurt, as assessed by confocal laser scanning microscopy (CLSM) and cryo scanning electron microscopy (cryo-SEM), was interrupted by large fat globules and featured more serum pores. These fat globules have a lower surface area and bind less protein than the homogenised fat globules in bovine milk. These microstructural differences likely lead to the higher syneresis observed for buffalo yoghurt with an increase from 17.4 % (w/w) to 19.7 % (w/w) in the weight of whey generated at days 1 and 28 of the storage. The higher concentration of total calcium in buffalo milk resulted in the release of more ionic calcium during fermentation. Gelation was also slower but the strength of the two gels was similar due to similar protein and total solids concentrations. Buffalo yoghurt was more viscous, less able to recover from deformation and less Newtonian than bovine yoghurt with a thixotropy of 3,035 Pa.s-1 measured for buffalo yoghurt at the end of the storage, at least four times higher than the thixotropy of bovine yoghurt. While the titratable acidity, lactose consumption and changes in organic acid concentrations were similar, differences were recorded in the viability of probiotic bacteria with a lower viability of Lactobacillus acidophilus of 5.17 log (CFU/g) recorded for buffalo yoghurt at day 28 of the storage. Our results show that factors other than the total solids content and protein concentration of milk affect the structural properties of yoghurt. They also illustrate the physicochemical reasons why buffalo and bovine yoghurt are reported to have different sensory properties and provide insight into how compositional changes can be used to alter the microstructure and properties of dairy products. © 2013 Springer Science+Business Media New York.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim : To determine the internalization and protective effects of potential ophthalmic formulations and nanoformulated natural proteins in ex-vivo bovine corneal alkali burn model.

Methods : The bovine cornea obtained were subjected to the 0.5 N NaOH insult that induced alkali burn and inflammation as observed in the in vivo situation. The toxic effects of the nanoformulation were evaluated in the normal and insult induced cornea using histological analysis. Internalization studies were carried out using in vivo imaging and analysis (IVIS, PerkinElmer, USA).

Results : The nanoformulations employed in this study showed no obvious changes in the integrity of the cornea. Further, improvements in the light transmittance and reduced inflammation were observed. The IVIS showed a dose dependant increase in the uptake of the nanoformulations with time.

Conclusion : The nanoformulated bovine lactoferrin and SurR9-C84A (SR9) proteins evaluated in the ex vivo bovine corneal irritation model is the first of its kind, and we report here the non-toxic and therapeutic potential of these formulations for topical applications.